Geometria euclidea

Segmenti consecutivi e adiacenti e la proiezione ortogonale

A cura di

14675 visite

2 domande

In questa lezione abbiamo definito il concetto di retta e semiretta. Questi concetti, però, sono delle idealizzazioni; non è di certo possibile tracciare una linea infinita nel mondo reale. Più vicino alla nostra esperienza è invece il concetto di segmento, che è l’oggetto matematico più simile a quello che vediamo su un foglio quando tracciamo un segno con una penna.

 

Definizione

Prendiamo una retta $r$ e due punti $A$ e $B$ su di essa. Si definisce segmento di estremi $A$ e $B$ l’insieme costituito dai punti $A$, $B$ e da tutti i punti compresi tra $A$ e $B$. Esso viene indicato con $AB$.

Dati due punti $A$ e $B$, inoltre, ci riferiremo alla distanza tra due punti come al segmento che li collega. (Non abbiamo parlato di lunghezza di un segmento: in questo contesto, la distanza sarà soltanto il segmento che abbiamo indicato. Nel contesto della geometria analitica, invece, sarà più naturale parlare della distanza in termini di lunghezza: si veda questa lezione).

 

 

Definizione

Due segmenti aventi in comune solamente un estremo si dicono consecutivi.

Due segmenti consecutivi i cui estremi sono sulla stessa retta si dicono adiacenti.

Dati due segmenti adiacenti $AB$ e $BC$, la somma di $AB$ e $BC$ è il segmento $AC$ (di cui $B$ risulta punto interno). 

Nella definizione di segmenti consecutivi viene richiesto che i segmenti abbiano in comune solamente un estremo. Questo non significa soltanto che gli altri estremi non coincidono, ma che nessun altro punto dei segmenti è in comune tra loro.

Ricordiamo infatti che per due punti passa una e una sola retta: di conseguenza se due segmenti hanno in comune più di un punto, devono giacere necessariamente sulla stessa retta. Se gli estremi dei segmenti coincidono, diremo che i segmenti sono coincidenti; altrimenti, diremo che sono sovrapposti.

ATTENZIONE: Molto spesso, quando si considerano due segmenti, si usano le espressioni "segmenti incidenti", "segmenti paralleli", "segmenti perpendicolari", e così via. Con questo, intendiamo dire che le rette sulle quali giacciono i segmenti considerati sono rispettivamente incidenti, parallele, perpendicolari, e così via.

 

Definizione

Si chiama punto medio di un segmento il punto interno al segmento che lo divide in due parti congruenti.

Il punto medio di un segmento è fondamentale per molte costruzioni geometriche, come per esempio:

 

Definizione

Dato un segmento $AB$ e una retta $r$, conduciamo le rette perpendicolari a $r$ passanti da $A$ e da $B$: esse incontrano $r$ rispettivamente in $A’$ e $B’$.

Diremo che il segmento $A’B’$ è la proiezione ortogonale di $AB$ su $r$, e anche che $A’$ e $B’$ sono le proiezioni ortogonali di $A$ e $B$ su $r$, rispettivamente.

Abbiamo precedentemente definito la distanza tra due punti come il segmento che collega i due punti considerati. Vogliamo definire il concetto di distanza di un punto $A$ da una retta $r$ in modo analogo, ossia trovando un segmento che, collegando $A$ con $r$, ne rappresenti la distanza. Il problema che sorge immediatamente è: quale punto della retta possiamo scegliere come estremo?

 

Definizione

Dati un punto $P$ e una retta $r$, consideriamo la proiezione ortogonale $P’$ di $P$ su $r$. il segmento $PP’$ è detta distanzadi $P$ da $r$. 


Nel contesto della geometria analitica, vedremo che avendo opportune informazioni è possibile determinare il valore numerico della distanza punto-retta.

domande

RELATORI

Sai rispondere
a queste domande?

Qui non ci sono ancora domande.

Visualizza altre domande o

Contatti Pubblicità Quality policy Note legali Cookie policy Oilproject Srl P.IVA 07236760968